7 research outputs found

    Adaptive Blind Channel Equalization

    Get PDF

    Automatic modulation recognition of communication signals

    No full text
    Automatic modulation recognition is a rapidly evolving area of signal analysis. In recent years, interest from the academic and military research institutes has focused around the research and development of modulation recognition algorithms. Any communication intelligence (COMINT) system comprises three main blocks: receiver front-end, modulation recogniser and output stage. Considerable work has been done in the area of receiver front-ends. The work at the output stage is concerned with information extraction, recording and exploitation and begins with signal demodulation, that requires accurate knowledge about the signal modulation type. There are, however, two main reasons for knowing the current modulation type of a signal; to preserve the signal information content and to decide upon the suitable counter action, such as jamming. Automatic Modulation Recognition of Communications Signals describes in depth this modulation recognition process. Drawing on several years of research, the authors provide a critical review of automatic modulation recognition. This includes techniques for recognising digitally modulated signals. The book also gives comprehensive treatment of using artificial neural networks for recognising modulation types. Automatic Modulation Recognition of Communications Signals is the first comprehensive book on automatic modulation recognition. It is essential reading for researchers and practising engineers in the field. It is also a valuable text for an advanced course on the subject

    Blind phase-amplitude modulation classification with unknown phase offset

    No full text
    This paper first discusses the maximum likelihood (ML) classifier for automatic classification of digital modulations. The classifier is optimum for classification of phase-amplitude modulated signals under ideal environment. However, this is not the case in the presence of phase offset owing to inaccurate estimation. In this paper, we propose a novel non-coherent ML classifier to mitigate the effect phase offset. The non-coherent ML classifier adopts a pre-classification phase correction stage through a closed form estimator based on Higher Order Statistics. Experimental results show improvement of classification accuracy at reasonable signal to noise ratio

    Vibration Image Representations for Fault Diagnosis of Rotating Machines: A Review

    No full text
    Rotating machine vibration signals typically represent a large collection of responses from various sources in a machine, along with some background noise. This makes it challenging to precisely utilise the collected vibration signals for machine fault diagnosis. Much of the research in this area has focused on computing certain features of the original vibration signal in the time domain, frequency domain, and time–frequency domain, which can sufficiently describe the signal in essence. Yet, computing useful features from noisy fault signals, including measurement errors, needs expert prior knowledge and human labour. The past two decades have seen rapid developments in the application of feature-learning or representation-learning techniques that can automatically learn representations of time series vibration datasets to address this problem. These include supervised learning techniques with known data classes and unsupervised learning or clustering techniques with data classes or class boundaries that are not obtainable. More recent developments in the field of computer vision have led to a renewed interest in transforming the 1D time series vibration signal into a 2D image, which can often offer discriminative descriptions of vibration signals. Several forms of features can be learned from the vibration images, including shape, colour, texture, pixel intensity, etc. Given its high performance in fault diagnosis, the image representation of vibration signals is receiving growing attention from researchers. In this paper, we review the works associated with vibration image representation-based fault detection and diagnosis for rotating machines in order to chart the progress in this field. We present the first comprehensive survey of this topic by summarising and categorising existing vibration image representation techniques based on their characteristics and the processing domain of the vibration signal. In addition, we also analyse the application of these techniques in rotating machine fault detection and classification. Finally, we briefly outline future research directions based on the reviewed works

    Efficacies of selected blind modulation type detection methods for adaptive OFDM systems

    No full text
    Adaptive modulation techniques have been proposed to optimise Shannon's channel capacity in orthogonal frequency division multiplexing (OFDM) system. By adapting the modulation type (effectively changing the number of bits per symbol) at the transmitter end one could improve the bit error rate (BER) during transmission at designated SNR. Blind detection of the transmitted modulation type is desirable to optimise the band-width available. This in turn implies the need for an intelligent modulation classification engine at the receiver end. In this work, we review and investigate two wellknown modulation classifiers, as well as propose a new candidate classifier based on up to sixth order statistics
    corecore